Mocking in Next.js with Jest: How to create mocks for API responses and dependencies

Mocking is an essential part of unit testing in Next.js with Jest. It allows us to create a fake version of a dependency or API response and test our code in isolation. In this blog post, we will explore how to create mocks for API responses and dependencies in Next.js with Jest.

What is mocking?

Mocking is the process of creating a fake version of a dependency or API response that our code depends on. By creating a mock, we can test our code in isolation without relying on external dependencies. This allows us to control the behavior of the mocked dependency or API response and test various scenarios.

Why use mocking?

There are several benefits to using mocking in our tests:

  • Isolation: By mocking dependencies and API responses, we can test our code in isolation without relying on external factors.
  • Control: We can control the behavior of the mocked dependency or API response and test various scenarios.
  • Speed: Mocking can make our tests run faster by reducing the need for external calls.

Creating mocks for API responses

When testing Next.js applications that rely on external APIs, we can create mocks for API responses using Jest’s jest.mock() function. This function allows us to replace the original module with a mock module that returns the data we want.

Here’s an example of how to create a mock for an API response in a Next.js application:

// api.js
import axios from 'axios';

export async function getUsers() {
  const response = await axios.get('/api/users');
  return response.data;
}

// __mocks__/axios.js
const mockAxios = jest.genMockFromModule('axios');

mockAxios.get = jest.fn(() => Promise.resolve({ data: [{ id: 1, name: 'John' }] }));

export default mockAxios;

In this example, we have created a mock for the **axios**module that returns a fake response with a single user. The mock is defined in the **__mocks__**directory, which is automatically recognized by Jest.

To use this mock in our test, we can simply call **jest.mock('axios')**at the beginning of our test file:

// api.test.js
import { getUsers } from './api';
import axios from 'axios';

jest.mock('axios');

describe('getUsers', () => {
  it('returns a list of users', async () => {
    axios.get.mockResolvedValue({ data: [{ id: 1, name: 'John' }, { id: 2, name: 'Jane' }] });

    const result = await getUsers();

    expect(result).toEqual([{ id: 1, name: 'John' }, { id: 2, name: 'Jane' }]);
  });
});

In this test, we have mocked the axios.get() method to return a list of two users. We then call the getUsers() function and assert that it returns the correct data.

Creating mocks for dependencies

In addition to mocking API responses, we can also create mocks for dependencies that our code depends on. This can be useful when testing functions that rely on complex or external dependencies.

Here’s an example of how to create a mock for a dependency in a Next.js application:

// utils.js
import moment from 'moment';

export function formatDate(date) {
  return moment(date).format('MMMM Do YYYY, h:mm:ss a');
}

// __mocks__/moment.js
const moment = jest.fn((timestamp) => ({
  format: () => `Mocked date: ${timestamp}`,
}));

export default moment;

In this example, we have created a mock for the moment module that returns a formatted string with the timestamp value. The mock is defined in the __mocks__ directory, which is automatically recognized by Jest.

To use this mock in our test, we can simply call jest.mock('moment') at the beginning of our test file:

// utils.test.js
import { formatDate } from './utils';
import moment from 'moment';

jest.mock('moment');

describe('formatDate', () => {
  it('returns a formatted date string', () => {
    const timestamp = 1617018563137;
    const expected = 'Mocked date: 1617018563137';

    const result = formatDate(timestamp);

    expect(moment).toHaveBeenCalledWith(timestamp);
    expect(result).toEqual(expected);
  });
});

In this test, we have mocked the moment() function to return a formatted string with the timestamp value. We then call the formatDate() function and assert that it returns the correct string.

Conclusion

Mocking is an essential part of unit testing in Next.js with Jest. It allows us to create a fake version of a dependency or API response and test our code in isolation. In this blog post, we explored how to create mocks for API responses and dependencies in Next.js with Jest. We saw how to use jest.mock() to create mocks for external APIs and how to create mocks for dependencies. By using mocking in our tests, we can test our code in isolation, control the behavior of dependencies and API responses, and make our tests run faster.

Advertisement

Creating a Todo Application using Next.js

Next.js is a framework for building server-rendered React applications. It provides a powerful set of features for web development such as automatic code splitting, server-side rendering, and static site generation. In this blog post, we will be creating a simple Todo application using Next.js.

Setting up the project

To get started, you will need to have Node.js and npm (or yarn) installed on your machine. Once you have these dependencies set up, you can create a new Next.js project using the following command:

npx create-next-app my-todo-app

This will create a new directory called “my-todo-app” with the basic file structure and dependencies for a Next.js app.

Creating the Todo List component

In this step, we will create a TodoList component that will display a list of todo items. Create a new file called TodoList.js in the components folder and add the following code:

import React from 'react';

const TodoList = ({ todos }) => {
  return (
    <ul>
      {todos.map((todo) => (
        <li key={todo.id}>
          <span>{todo.text}</span>
          <button>Delete</button>
        </li>
      ))}
    </ul>
  );
};

export default TodoList;

In this code, we are rendering an unordered list and mapping over the todos prop to create a list item for each todo item. We also added a button to delete the todo item.

Adding the Todo Form

Now that we have the TodoList component, we need to create a form to add new todo items. Create a new file called TodoForm.js in the components folder and add the following code:

Copy code
import React, { useState } from 'react';

const TodoForm = ({ addTodo }) => {
  const [text, setText] = useState('');

  const handleSubmit = (e) => {
    e.preventDefault();
    if (!text) return;
    addTodo(text);
    setText('');
  };

  return (
    <form onSubmit={handleSubmit}>
      <input
        type="text"
        value={text}
        onChange={(e) => setText(e.target.value)}
        placeholder="Add Todo..."
      />
    </form>
  );
};

export default TodoForm;


In this code, we are creating a form with an input that allows the user to enter a new todo item. When the form is submitted, it calls the addTodo function with the text of the input as an argument. We are also reset the text state after adding the todo item.

Creating the TodoPage

Create a new file called TodoPage.js in the pages folder and add the following code:

Copy code
import React, { useState } from 'react';
import TodoList from '../components/TodoList';
import TodoForm from '../components/TodoForm';

const TodoPage = () => {
const [todos, setTodos] = useState([]);

const addTodo = (text) => {
setTodos([...todos, { id: todos.length + 1, text }]);
};

const deleteTodo = (id) => {
setTodos(todos.filter((todo) => todo.id !== id));
};

return (
<div>
<TodoForm addTodo={addTodo} />
<TodoList todos={todos} deleteTodo={deleteTodo} />
</div>
);
};

export default TodoPage;


In this file, we are creating a TodoPage component that contains the TodoForm and TodoList components. We are also using React’s useState hook to manage the state of the todo items. The addTodo function is passed down to the TodoForm component as a prop and is called when a new todo item is added. The deleteTodo function is passed down to the TodoList component as a prop and is called when a todo item is deleted.

Adding Routing

Add the following code in your pages/index.js file to redirect users to the TodoPage by default

import TodoPage from './TodoPage';

export default function Home() {
  return <TodoPage />;
}

Now the user will be able to access the TodoPage by visiting the root of your application.

That’s it! You now have a working Todo application built with Next.js. You can customize the application further by adding styles, saving the todo items to a database, or adding more features.

Adding Styles

You can add styles to your Todo application using a CSS preprocessor like SASS or using CSS-in-JS libraries like styled-components.

If you decide to use a CSS preprocessor, you will need to install the necessary dependencies and configure Next.js to use it. You can add the CSS files to the styles directory in the root of your project.

If you prefer to use styled-components, you can install it using npm or yarn by running the following command:

npm install styled-components

And then you can import it in your TodoForm.js and TodoList.js and add styles to your components.

import styled from 'styled-components';

const TodoForm = ({ addTodo }) => {
  // ...
  return (
    <Form onSubmit={handleSubmit}>
      <Input
        type="text"
        value={text}
        onChange={(e) => setText(e.target.value)}
        placeholder="Add Todo..."
      />
    </Form>
  );
};

const Form = styled.form`
  display: flex;
  margin-bottom: 16px;
`;

const Input = styled.input`
  flex: 1;
  padding: 8px;
  border-radius: 4px;
  border: 1px solid #ccc;
`;


Saving Todo items to a database

To save the todo items to a database, you will need to create a backend service that the Next.js app can communicate with. You can use a variety of technologies to build the backend, such as Node.js with Express, Python with Flask or Ruby on Rails.

In your backend service, you will need to create a REST API that the frontend can send requests to for creating, reading, updating, and deleting todo items.

Then you need to call the API in the TodoPage component’s functions like addTodo, deleteTodo to perform the CRUD operations on todo items.

Additionally, you can also use a library like axios or fetch to communicate with the backend service.

In summary, creating a Todo application using Next.js is a straightforward process, but you can also add further functionality like styles, routing, and saving the data to a database. It’s a great way to learn more about building web applications with React and Next.js and you can use the concepts you learn to build more advanced applications in the future.